Краткое изложение материалов лекционного курса

МЕТОДЫ ОПТИМИЗАЦИИ,

относящихся к задачам **линейного программирования**, лектор проф. М. М. Потапов

Общая задача линейного программирования:

$$J(u) = \langle c, u \rangle \to \inf, \quad u \in U = \{u \in \mathbb{R}^n \mid Au = b, Du \leqslant f\}.$$

Каноническая задача линейного программирования:

$$J(u) = \langle c, u \rangle \to \inf, \quad u \in U = \{ u \in \mathbb{R}^n \mid Au = b, \ u \geqslant 0 \}. \tag{1}$$

Любую общую задачу ЛП можно свести к канонической, правда, ценой значительного увеличения размерности. Справедлива

Теорема 1. В канонических задачах линейного программирования 1) если допустимое множество U непусто, то оно содержит хотя бы одну угловую точку, 2) если нижняя грань функционала J_* конечна, то множество U_* оптимальных решений непусто, 3) если множество U_* оптимальных решений непусто, то оно содержит по крайней мере одну угловую точку множества U.

Вывод: решать задачу ЛП программирования можно перебором угловых точек (вершин) канонического многогранника U. Одним из целенаправленных способов такого перебора, обеспечивающим монотонное невозрастание функционала J(u), является симплекс-метод. Для его реализации нужна стартовая угловая точка (вершина) канонического многогранника U и правило распознавания угловых точек.

Алгебраический критерий для распознавания угловых точек содержится в следующей теореме.

Теорема 2. Пусть U – канонический многогранник вида (1), A_j , j=1,2,...,n, – столбцы матрицы A и ранг матрицы A равен $r\geqslant 1$. Тогда для того, чтобы точка $v\in U$ была угловой точкой множества U, необходимо и достаточно, чтобы равенство Au=b из определения множества U выполнялось в виде

$$A_{j_1}v_{j_1} + \dots + A_{j_r}v_{j_r} = b, (2)$$

причем столбцы A_{j_i} , i=1,2,...,r, обязательно являются базисными для матрицы A, а не представленные в (2) координаты точки v обязательно равны нулю.

Найти стартовую угловую точку канонического многогранника U можно методом uckyccmeehhoro базиса. Для этого рассматривается следующая вспомогательная задача ЛП в пространстве переменных $z=(x,u)\in R^{m+n}$, где m – количество строк матрицы A:

$$g(z) = x_1 + x_2 + \dots + x_m \to \inf, \quad z \in Z = \{z \ge 0, \ x + Au = b\}.$$
 (3)

Без ограничения общности компоненты вектора b предполагаются неотрицательными: $b \geqslant 0$. Тогда по теореме 2 точка $z_0 = (x = b, u = 0)$ является yеловой точкой канонического многогранника Z. Из этой точки z_0 можно запустить симплекс-метод (с антициклином) и он за конечное число шагов найдет решение $z_* = (x_*, v_*)$ задачи (3), которое существует в силу теоремы 1, так как $g_* = \inf_{z \in Z} g(z) \geqslant 0$. При этом

$$g_* = 0 \iff U \neq \emptyset,$$

а компонента v_* будет $y \varepsilon no so \check{u}$ точкой каконического многогранника U, из которой и запускается симплекс-метод в исходной задаче (1).

На каждом шаге симплекс-метода обрабатывается очередная угловая точка $v \in U$. Этой точке по теореме 2 соответствует базисный набор столбцов матрицы A с базисными номерами

$$J_b = \{ j_1, j_2, \dots, j_r \}.$$

Оставшиеся координаты объединяются в набор ceofodhux номеров $J_f = \{1, 2, \ldots, n\} \setminus J_b$. Переменные $u_b = (u_{j_1}, u_{j_2}, \ldots, u_{j_r})$ объявляются basic зисными, а остальные n-r переменных $u_f - ceofod$ ными. Затем в задаче (1) исключаются базисные переменные и она превращается в (nekahohuveckyw) задачу ЛП меньшей размерности:

$$j(u_f) = J(v) - \sum_{k \in J_f} \Delta_k u_k \to \inf, \quad u_f \geqslant 0, \quad u_b \geqslant 0.$$
 (4)

Неканоническими в задаче (4) являются ограничения $u_b \geqslant 0$ на исключенные базисные переменные. Далее, выбираются номера свободных переменных, перспективных в плане убывания функционала:

$$J_f^+ = \{ k \in J_f \mid \Delta_k > 0 \}.$$

При этом возможны три случая.

I. $J_f^+ = \emptyset$. Это означает, что никакой возможности уменьшить значения функционала уже нет, процесс останавливается, а искомое решение найдено: $v \in U_*, \ J_* = J(v)$.

- II. $J_f^+ \neq \emptyset$ и $\exists k \in J_f^+$, такой, что на свободную переменную u_k неканонические условия $u_b \geqslant 0$ на самом деле никаких реальных ограничений сверху не накладывают. Тогда процесс останавливется с неутешительным выводом: решения у задачи (1) не существует, а $J_* = -\infty$.
- III. В случае, когда $J_f^+ \neq \varnothing$ и $\forall k \in J_f^+$, возможные значения переменной u_k ограничены сверху, среди этих свободных переменных выбирается однаединственная, ей присваивается максимально возможное значение, а остальным свободным переменным присваиваются нулевые значения. В результате получается очередная угловая точка $w \in U$, причем $J(w) \leq J(v)$. Описанное здесь действие принято называть шагом симплекс-метода. Строгое убывание J(w) < J(v) гарантировано в случае невырожденной угловой точки v, все базисные координаты которой положительны: $v_j > 0 \ \forall j \in J_b$. Если угловая точка v вырожденна, не исключено "топтание на месте": $J(w) = J(v), \ w = v$ и связанное с этим явлением зацикливание. Один из известных способов борьбы с зацикливанием симплекс-метода правило Блэнда, которое упорядочивает выбор номеров свободных переменных, пригодных для одномерных вариаций в случае III.

Разумеется, для решения задач ЛП c неточными данными нужно подключать дополнительные регуляризирующие процедуры (в лекционном курсе эти проблемы не рассматривались).